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Abstract. We study the properties of theq-state frustrated bond percolation model by a Monte
Carlo ‘bond flip’ dynamics, using an algorithm originally devised by Sweeny and suitably modified
to treat the presence of frustration. Forq = 2 the model gives the cluster formulation of the
Edwards–Anderson spin glass. We analyse the percolation transition of the model, and find that it
falls in the universality class of theq/2-state ferromagnetic Potts model. We then investigate the
bond flip dynamics of the model, and find that, while for temperatures higher than the percolation
transition,Tp , the relaxation functions are fitted by a single exponential, forT < Tp they show a
two-step decay, reminiscent of the relaxation of glass-forming liquids. The long time decay (α-
relaxation) is well fitted forT < Tp by a stretched exponential function, showing that in this model
the relevant mechanism for the appearance of stretched exponentials is the percolation transition. At
very low temperatures the relaxation functions develop a longplateau, as observed in glass-forming
liquids.

1. Introduction

Cluster concepts have been extremely useful in critical phenomena to elucidate the mechanism
underlying a thermodynamical transition, by providing a geometrical interpretation of
thermodynamic correlations. In the Ising model defined by the Hamiltonian

H = −J
∑
〈ij〉

SiSj (1)

a correct definition of clusters was given by Kasteleyn and Fortuin [1] and by Coniglio and
Klein [2]. In the Coniglio–Klein approach, one throws a bond between pairs of parallel nearest
neighbour spins with a probabilityp = 1− e−2βJ , whereβ = 1/kBT . By summing over the
spin configurations with the Boltzmann weight, the partition function of the model defined by
equation (1) can be written as a sum over bond configurationsC,

Z =
∑
C

eµb(C)qN(C) (2)

whereq = 2, b(C) is the number of bonds in the configurationC, N(C) the number of
connected clusters, andµ = log( p

1−p ) = log(e2βJ − 1) is the chemical potential of the
bonds. In this approach thermodynamic averages can be related to corresponding percolative
quantities. One finds that the clusters represent spin fluctuations, and percolate at the Ising
critical temperature with Ising critical exponents.

This approach can be extended to the Potts model, in which spins can haveq 6= 2 different
states. In this case the parameterq in equation (2) can assume a valueq 6= 2, and for every
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value of q the percolation model has the same critical temperature and exponents as the
corresponding Potts model. Forq = 1 one recovers the random bond percolation. Sweeny [3]
studied the weighted percolation problem defined by equation (2) by Monte Carlo techniques
on a two-dimensional square lattice. He showed that a simulation based on this approach does
not suffer from critical slowdown forq < 4. In a few Monte Carlo steps one can equilibrate
even a very large lattice at the critical temperature. Thus, he extracted information about the
critical point of the Potts model by measuring geometric quantities like the mean cluster size
at the transition point. Later, the cluster approach was further elaborated by Swendsen and
Wang [4] and Wolff [5], by implementing an efficient cluster dynamics to directly simulate
the spin model (1), which drastically reduces the critical slowdown of conventional spin flip
simulations.

The cluster approach has also been extended to frustrated systems like spin glasses [6, 7].
With respect to the ferromagnetic case, new features appear, due to the phenomenon of
frustration. In fact, the percolation model that one obtains has the same complexity as the
original spin model, and is not useful to define fast Monte Carlo dynamics, as in the unfrustrated
case. Nevertheless, it represents an interesting tool to investigate the properties of frustrated
spin systems from the geometrical point of view. Moreover, it can be considered on its own
as a model of percolation in a frustrated medium, which makes it of relevance in the study of
systems in which frustration and connectivity play a central role, as in structural glasses.

To illustrate the cluster approach to frustrated spin models, let us consider the Ising spin
glass, defined by the Hamiltonian

H = −J
∑
〈ij〉

εijSiSj (3)

whereεij are quenched random variables that can have the valuesεij = ±1. As in the
ferromagnetic case, one throws a bond between nearest neighbour spins that satisfy the
interaction (in this case ifεijSiSj = 1) with probability p = 1 − e−2βJ . The crucial
difference with the ferromagnetic case is that, in general, not all the interactions can be satisfied
simultaneously. Indeed, a closed loop such that the product ofεij along the loop is negative
does not admit any spin configuration satisfying all the interactions, and is called frustrated.
Since bonds can be put only between spins that satisfy the interaction, one cannot put bonds on
the lattice that close a frustrated loop. In terms of bond configurations, the partition function
of the Ising spin glass turns out to be

Z =
∑
C

∗
eµb(C)qN(C) (4)

whereq = 2, µ = log( p

1−p ) = log(e2βJ − 1), b(C) is the number of bonds, andN(C) the

number of clusters in the configurationC. Here the sum
∑∗

C is extended to all the bond
configurations that do not contain a frustrated loop. Therefore, in this cluster formalism,
the only difference between the Ising spin glass and the ferromagnetic model is that, in the
ferromagnetic case (2) the sum is over all the bond configurations, while in the spin glass (4),
due to the geometrical constraint, the sum is restricted to a subset of the bond configurations.
In particular, the ground state atT = 0 (µ = ∞) is obtained by maximizing the number of
bonds, under the constraint that the bond configuration does not contain a frustrated loop.

Due to frustration, clusters defined in the spin glass model no longer correspond to
thermodynamical fluctuations. In fact, the correlations between spins can be either positive
(if they propagate along a path that contains an even number of negative interactions) or
negative (if the path contains an odd number of negative interactions), so they interfere and are
cancelled out at least in part [6, 7]. On the other hand, connectivity is always positive and, as
a result, clusters in the spin glass model percolate at a higher temperatureTp, with respect to
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the critical temperatureTSG. In the three-dimensional Ising spin glass, simulations show that
Tp ' 3.95J/kB [8], while TSG ' 1.11J/kB [9].

As in the ferromagnetic case, the model defined by equation (4) can be extended to values
q 6= 2 of the spin multiplicity. We call this model the ‘q-state frustrated percolation model’.
For q an integer and even, equation (4) is the partition function of the model defined by the
Hamiltonian [10]

H = −J
∑
〈ij〉

δσiσj (εij SiSj + 1) (5)

whereσi = 1 . . . q/2 are Potts spins, andδσiσj is the Kroneker delta. In analogy to the
caseq = 2, the model is expected to have two transitions, one at a temperatureTSG(q)

corresponding to the freezing of Ising spins, and the other at a temperatureTp(q) > TSG(q)

corresponding to the percolation of the clusters. A renormalization group calculation carried
over a hierarchical lattice [11] has confirmed this expectation, and has shown that the transition
atTSG should be in the universality class of the Ising spin glass, no matter what the value ofq,
while the percolation transition atTp should be in the universality class of theq/2 state Potts
model. Forq = 1 the model assumes a very simple form, as the factorqN(C) disappears. The
resulting model has been called ‘frustrated percolation’, and can be viewed as a simple model
of percolation in a frustrated medium. Despite its simplicity, its dynamical properties exhibit
a complex behaviour, with features in common with both structural glasses and spin glasses.

In this paper, we perform a Monte Carlo study of theq-state frustrated percolation model
on a two-dimensional square lattice, using a ‘bond flip’ dynamics, in which bonds are added
and removed from the lattice with appropriate probabilities, in order to satisfy the principle of
detailed balance. To do this, we have realized an algorithm that allows one to determine the
connectedness of two given sites, and the presence of frustrated loops, with a time that in the
worst case (at the percolation temperature) scales only with the logarithm of the lattice size, as
we describe in section 2. The algorithm is a modification of the algorithm used by Sweeny in
the ferromagnetic case [3]. In section 3 we report our results on the percolation transition of
the model forq = 1, 2, 4. Note that, while forq as a multiple of two, the percolation transition
can also be studied by conventional spin flip [12], for other values ofq the ‘bond flip’ dynamics
is the only way to simulate the model. In sections 4 and 5 we study the dynamical properties
of the model, analysing the relaxation functions of the number of bonds.

2. Monte Carlo algorithm

We have implemented a Monte Carlo algorithm to simulate the bond percolation model defined
by equation (4) on a two-dimensional square lattice, which can be applied for any value of the
parameterq ∈ [0,∞). The interactionsεij between pairs〈ij〉 of nearest neighbour sites are
set at the beginning to a value +1 or−1 randomly, with equal probability. These variables are
quenched, and their state is not changed by the dynamics.

Each edge of the lattice, that is each pair of nearest neighbour sites, can be in two possible
states: connected by a bond or not. At each step of the dynamics, we try to flip the state of an
edge chosen randomly, with a probability determined in such a way to satisfy the principle of
detailed balance. If we try to remove a bond from the system, or to add a bond that does not
close a frustrated loop, then the probability of carrying out the ‘bond flip’ will be

Pflip = min(1, eµδbqδN) (6)

whereδb is the change in the number of bonds andδN is the change in the number of connected
clusters. If we are trying to add a bond that closes a frustrated loop, then we have simply
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Figure 1. (a) Bonds, dual bonds, and chains. Open circles represent sites of the original lattice;
solid squares, sites of the dual lattice; solid lines, bonds and dual bonds; dashed lines represent
chains. (b) Pointers forming chains on the lattice. Each pointer points to an ALONG pointer in the
direction of the arrow, and to an UP pointer in the opposite direction (not necessarily the nearest
ones).

Pflip = 0. A Monte Carlo step (MCS) is defined as 2V single bond flip trials, whereV = L2

is the total number of sites, and 2V the total number of edges of the lattice.
The nontrivial point here is to determine the change in number of connected clusters, and

to verify if a bond added between two given sites closes, or not, a frustrated loop. To do this,
we have used the algorithm used by Sweeny in the ferromagnetic case [3], suitably modified
to treat the frustration occurrence. Consider a two-dimensional square lattice, together with its
dual lattice. If a bond is present on the lattice, then its dual bond is absent, and vice versa. The
boundaries between connected clusters on the lattice and on its dual will form a collection of
closed loops, as shown in figure 1(a). These loops are represented in the computer as chains
of pointers. Each site on the lattice has four pointers adjacent to it, as shown in figure 1(b). At
the beginning of the simulation, pointers are organized in a hierarchical way, by giving them a
defined ‘level’, which do not change in the following. A fraction(4−n−4−(n+1)) of the pointers
are at leveln = 0, 1, . . . , nmax− 1, and 4−nmax at levelnmax, where levelnmax is chosen so that
it counts not more than four pointers. Chains are then formed by making each pointer point to
other two pointers of the chain, one in the direction of the arrows, called the ALONG pointer,
and one in the opposite direction, called the UP pointer. The ALONG pointer must be at least
at the same level of the one pointing to it, and the UP pointer at a higher level (except if there
are no higher level pointers in the chain), so they, in general, do not correspond to the nearest
pointers in the chain.

When we add a bond to the lattice, (and remove its dual), two things can happen: the
bond links two sites already belonging to the same connected cluster, and thereforeδN = 0;
the bond links two previously disconnected clusters, andδN = −1. In the first case the bond
will cut a single chain into two distinct chains, see figure 2(a), while in the second case it will
join two distinct chains into a single chain, see figure 2(b). When we remove a bond from the
lattice, (and add its dual), it happens the other way round. Using this auxiliary data structure,
one can determine if two given chain pointers belong to the same chain or not, and cut and
rejoin chain segments, in a CPU time that grows only with the logarithm of the chain length.

To simulate the frustrated percolation model, we must also determine if a bond added to
the lattice closes a frustrated loop or not. To do this, we must be able to count the number
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Figure 2. Addition of a bond to the lattice: (a) the bond links two sites already belonging to the
same cluster, and cuts a single chain into two distinct chains; (b) the bond links two disconnected
clusters, and joins two distinct chains into a single chain.

R

A

B

G

H

Figure 3. Determination of the number of antiferromagnetic bonds along a path from site A to site
B. Straight lines represent ferromagnetic bonds, wavy lines antiferromagnetic ones. The number
of antiferromagnetic bonds skirted traversing the chain in the UP direction (opposite to the arrows)
from the pointer G adjacent to A to the reference pointer R is three, while from H to R is two.
Taking the difference, we find the number we seek: one.

of antiferromagnetic bonds encountered along a path that joins two given sites A and B. This
can be done if every chain pointer contains information about the number of antiferromagnetic
bonds ‘skirted’ when one traverses the chain to its UP pointer. Call this number the ‘phase’
of the pointer with respect to its UP pointer. We then go on jumping from each pointer to
its UP pointer, and adding the relative phases, until we reach a reference pointer, R, in the
chain. Then the number we seek is found as the difference between the phases of two pointers
adjacent to the sites A and B, with respect to the reference pointer R, as shown in figure 3.
This reference pointer is chosen between the highest level pointers in the chain, and is the UP
pointer of all the pointers belonging to the highest level in the chain. When we cut and rejoin
chain segments, we must coherently update the relative phases of the chain pointers involved,
and assure that there is one and only one reference pointer per chain.



4822 A de Candia et al

3. The percolation transition

We have studied the percolation transition of the model defined by equation (4), forq = 1, 2, 4.
For each value ofq we have simulated the model for lattice sizesL = 32, 64, 128. The
histogram method [13] was used to analyse the data. In this section, we use the probability
p as the independent variable. It is connected to the temperature via the simple relation
p = 1 − e−2βJ . For each value ofq andL, 16 probabilities were simulated around the
percolation transition point, taking 103 MCS for thermalization, and between 104 MCS (for
L = 128) and 105 MCS (forL = 32) for the acquisition of the histograms. Histograms were
taken of the number of bonds; of the mean cluster size, defined as1

V

∑
s s

2ns , wherens is the
number of clusters of sizes; and of the occurrence of a spanning cluster, defined as a cluster
that spans from the bottom to the top of the lattice. These histograms were used to calculate the
average number of bonds〈b〉, the fluctuation in the number of bonds〈b2〉 − 〈b〉2, the average
mean cluster sizeχ , and the spanning probabilityP∞, in a whole interval of probabilities
around the percolation transition probability.

The spanning probabilityP∞(p) and the mean cluster sizeχ(p), as a function of the
lattice sizeL and of the probabilityp = 1− e−2βJ , around the percolation probabilitypc
should obey the scaling laws [14, 15]

P∞(p) ' P̃∞[L1/ν(p − pc)] (7a)

χ(p) ' Lγ/νχ̃ [L1/ν(p − pc)] (7b)

whereγ andν are the critical exponents of mean cluster size and connectivity length,P̃∞ and
χ̃ are universal functions. Given equation (7a), the value of the transition probabilitypc can
be evaluated from the point at which the curvesP∞(p) for different values ofL intersect. In
figure 4(a) are plotted the measured curvesP∞(p) for q = 1 andL = 32, 64, 128. One must
extrapolate the value at which curves forL,L′ → ∞ intersect. Then we have evaluated the
critical exponent 1/ν, by choosing the value that gives the best data collapse of the curves,
when one plotsP∞(p) as a function ofL1/ν(p − pc), see figure 4(b). The errors onpc and
1/ν were evaluated as the amplitudes of the intervals within which a good data collapse was
obtained. Given equation (7b), the mean cluster sizeχ(p) has a maximum that scales asLγ/ν ,
see figure 5(a). From a log–log plot ofχmax in function ofL, we can extract the exponent
γ /ν, making a linear fit, as shown in figure 5(b). Results are summarized in table 1. These
results are in good agreement with the prediction that the percolation transition of the model
falls in the universality class of theq/2-state ferromagnetic Potts model [11], whose critical
exponents are reported in table 2 [16].

Renormalization group calculations [11] show that the model should also have a singularity
in the free-energy densityF(p) atpc(q), with a singular partFsing(p) ∼ A(q)(p−pc)2−α(q/2),
whereα(q/2) is the specific heat exponent of theq/2-state ferromagnetic Potts model. In
particular the model withq = 4 should have a singularity corresponding to the ferromagnetic
Ising model, that is a logarithmic divergence of the second derivative of the free energy (specific
heat). From equation (4) it is possible to show, that the derivatives of−βF = V −1 logZ with
respect toµ are equal to the cumulants of the distribution of the number of bonds, divided by
the total number of sitesV . As µ is a regular function of the probabilityp for 0 < p < 1,
we conclude that the model withq = 4 should have a divergence in the second cumulant, that
is, the fluctuation of the number of bonds divided byV . For finite size systems, we expect to
see a peak whose maximum scales as log(L). In figure 6 we show our results forq = 4 and
L = 32, 64, 128. It is evident that there is a divergence, but statistical errors do not allow to
distinguish between logarithmic and a weak power law divergence.

Forq = 2 one would expect a singularity in the free energy, at the percolation transition,
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Figure 4. Measure of percolative quantities on the model withq = 1 and lattice sizes
L = 32, 64, 128. (a) Spanning probabilityP∞(p) as a function of probabilityp. (b) P∞(p)
as a function of(p − pc)L1/ν , with pc = 0.589 and 1/ν = 0.56.

characterized by an exponent 2− α(1) = 8
3, that is a divergence in the third cumulant of

the number of bonds. For the Ising spin glass (q = 2) this would imply a divergence in the
third cumulant of the distribution of the energy. However, several arguments, including a
renormalization group calculation [11], predict that the singularity could be cancelled out by
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Figure 5. (a) Mean cluster sizeχL(p) as a function of probabilityp, for lattice sizesL = 32, 64,
128. (b) Maximumχmax

L of χL(p) as a function of lattice sizeL.

the vanishing of the prefactorA(q) for q → 2. This prediction could be checked by showing
that the third cumulant does not diverge, but much more extensive simulations are needed to
verify this prediction.
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Table 1. Measured critical temperature and exponents for the percolation transition in theq-state
frustrated percolation model. Temperatures are measured in units ofJ/kB .

q Tp 1/ν γ

1 2.25± 0.03 0.56± 0.01 3.19± 0.05
2 1.814± 0.024 0.77± 0.02 2.28± 0.06
4 1.47± 0.04 0.95± 0.04 1.79± 0.08

Table 2. Critical temperature and exponents of theq-state ferromagnetic Potts model. Temperatures
are measured in units ofJ/kB .

q Tc 1/ν γ α

1
2 3.740 0.5611 3.2696 −1.5645
1 2.885 3

4
43
18 − 2

3
2 2.269 1 7

4 (log)
4 1.820 3

2
7
6

2
3

Figure 6. Fluctuation〈b2〉 − 〈b〉2 of the number of bonds, divided by the number of sitesV , as a
function ofp, for q = 4 and lattice sizes (from bottom to top)L = 32, 64, 128.

4. Onset of stretched exponentials

We have studied the dynamical properties of theq-state frustrated percolation model forq = 1,
2, and 4, by calculating the autocorrelation function of the number of bonds. This is defined
as

F(t) = 〈b(0)b(t)〉 − 〈b〉
2

〈b2〉 − 〈b〉2 (8)

and is normalized so thatF(0) = 1, while fort →∞ it relaxes to zero. We simulated the model
on a two-dimensional square lattice of size 32× 32, and took 105 MCS for thermalization,
and between 105 and 2× 106 MCS for acquisition. All the functions were then averaged over
16 different configurations of the interactionsεij . Errors are evaluated as the mean standard
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Figure 7. (a) Relaxation functions of the number of bonds in the model withL = 32, q = 1,
for temperatures (from left to right)T = 2.7, 2.3, 2.0, 1.8, 1.5, 1.2. Solid lines are the stretched
exponential fit functions. (b) Stretching exponentβ(T ) as a function of temperature forL = 32
(stars). The open circle represents a single simulation made forL = 100 andT = 2.3. Arrows
mark the percolation transitionTp and the critic temperature of the pure modelTc.

deviation of this last averaging.
In figures 7(a), 8(a), and 9(a), respectively, we show the results forq = 1, 2, and 4.

For all the three values of the multiplicityq considered, we observe the same behaviour. For
high temperatures, the functions show a single exponential decay, while at lower temperatures
they show a two-step decay, reminiscent of what one observes in glass-forming liquids at low
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Figure 8. (a) Relaxation functions of the number of bonds in the model withL = 32,q = 2, for
temperatures (from left to right)T = 2.2, 2.0, 1.8, 1.5, 1.2, 1.0. Solid curves are the stretched
exponential fit functions. (b) Stretching exponentβ(T ) as a function of temperature.

temperature. This behaviour can be explained by the presence, at temperatures below the
percolation transition, of a rough landscape of the free energy in configuration space, with
many minima separated by high barriers. The short time decay corresponds to the relaxation
inside the single valley, while the long time tail is due to the tunnelling through barriers and
final decay to equilibrium (α relaxation). Furthermore, the second step of relaxation functions
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Figure 9. (a) Relaxation functions of the number of bonds in the model withL = 32,q = 4, for
temperatures (from left to right)T = 1.9, 1.7, 1.5, 1.3, 1.2, 1.0. Solid curves are the stretched
exponential fit functions. (b) Stretching exponentβ(T ) as a function of temperature.

is well fitted by a stretched exponential function

F(t) ∝ exp−
(
t

τ

)β
(9)

whereβ is an exponent lower than one.
In disordered and frustrated spin systems like spin glasses, simulated by conventional

spin flip, the appearing of non-exponential relaxation is believed to be caused by the existence
of unfrustrated ferromagnetic clusters of interactions, see Randeriaet al [17]. Below the
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ferromagnetic transition temperatureTc of the pure model, each unfrustrated cluster relaxes
with a time that depends on its size. Due to the disorder of the interactions, the sizes of
the unfrustrated clusters are distributed in a wide range, giving rise to a wide distribution of
relaxation times in the model. Therefore, according to this picture, the temperatureTc of the
ferromagnetic transition of the pure model marks the onset of non-exponential relaxation.

Theq-state frustrated percolation model is equivalent, for what concerns static properties,
to a disordered spin system. In particular, there are unfrustrated clusters of interactions with
different sizes, due to the disorder of the variablesεij . On the other hand, the bond flip
dynamics does not suffer from critical slowing down near the ferromagnetic critical point [3],
so we expect that the Randeria mechanism does not apply in this case. We have verified this
point plotting the stretching exponentβ(T ) as a function of the temperatureT , for q = 1,
2, and 4, as shown in figure 7(b), 8(b), and 9(b), respectively. In the case ofq = 2 and 4,
it is quite evident from the data that the transition point of the pure modelTc does not mark
any change in the behaviour of relaxation functions. Instead, the temperatureTp, at which
clusters of bond percolate, appears as the point that marks the onset of stretched exponential
relaxation. The caseq = 1 was not so evident from our results. For this reason we made
a single simulation for a much larger system (L = 100), at a temperatureT = 2.3 slightly
higher than the percolation threshold (Tp = 2.25). By fitting the function for times greater than
1.5 MCS, whereF(t) < 0.05, we obtain a stretching exponentβ = 0.97, definitely higher
than that obtained at the same temperature forL = 32 (β = 0.86). Thus, it seems that for
q = 1 finite-size effects at the percolation transition are more important, but nevertheless, the
relaxation is asymptotically purely exponential forT > Tp. In conclusion, our results show
that, for all the values ofq studied, in this model the relevant mechanism for the appearing of
non-exponential relaxation is the percolation transition.

5. Dynamical properties at low temperature

We have evaluated the relaxation functions, in the model withq = 1 and 2, for very low
temperatures. In figures 10(a) and (b) we show the results forL = 40, q = 1 and 2, and
for different temperatures, averaged over 16 different configurations of interactions. For the
lowest temperatures, the functions do not relax smoothly to zero. This is clearly an effect due
to the relaxation time being greater than the total time of the run, that was between 2× 106

and 5× 106 MCS. For such very low temperatures, the relaxation functions show a behaviour
very similar to what can be observed in glass-forming liquids near or below the mode coupling
theory transition temperature [18]. A first short time decay is followed by a very longplateau,
and eventually there is a final relaxation to equilibrium, for very long times.

We compare this behaviour to what one observes in the Ising spin glass simulated by
conventional spin flip. In figure 11 the relaxation functions of the energy, for the Ising spin
glass on a two-dimensional square lattice withL = 40, and for the same temperatures of
figure 10(b), are shown. Note that in this case there is not a clear separation between the first
short time decay and the long time tail of the functions, and the functions do not show any
plateau.

6. Conclusions

We have studied theq-state frustrated percolation model, by means of a ‘bond flip’ Monte
Carlo dynamics. The model is equivalent from the thermodynamic point of view to the Potts
spin glass model (5), which forq = 2 coincides with the Ising spin glass. We have studied the
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Figure 10. (a) Relaxation functions of the number of bonds in the model withL = 40, q = 1,
for temperatures (from bottom to top)T = 1.5, 1.0, 0.6, 0.5. (b) Model withL = 40,q = 2, for
temperatures (from bottom to top)T = 0.6, 0.5, 0.4, 0.35.

percolation transition that happens at a temperatureTp greater than the spin glass temperature
TSG, and found that it belongs to the universality class of theq/2-state ferromagnetic Potts
model.

We have then studied the dynamical properties of the model. Unlike what happens in
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Figure 11. Relaxation functions of the energy in the spin glass model withL = 40, simulated by
spin flip, for temperatures (from bottom to top)T = 0.6, 0.5, 0.4.

spin glass systems, simulated by conventional spin flip, here the transition temperatureTc
of the pure model does not play any role in determining the dynamical behaviour. Instead,
the percolation temperatureTp appears to mark the onset of two-step decay, and stretched
exponentials in autocorrelation functions.

At very low temperatures the autocorrelation functions develop a longplateau, as observed
in glass-forming liquids, and predicted by the mode coupling theory. This is a feature of the
bond flip dynamics we have performed, while the spin flip dynamics of the spin glass model,
that is thermodynamically equivalent to our model forq = 2, is very different, and does not
show anyplateau.

The difference lies in the fact that, unlike the spin model, the bond model does describe
a packing problem, where the bonds must arrange themselves on the lattice with the steric
constraint that no frustrated loop can be closed. This makes the dynamics similar, in some
respect, to that of glass-forming liquids, where molecules (or groups of molecules) move
under the constraint of some kind of steric hindrance. In liquids the plateau and two-step
relaxation are due to the so-called ‘cage effect’, where molecules rattle inside the cage formed
by neighbours, until the cage is disrupted by a structural relaxation. Here we observe a similar
effect, where bonds are removed and added again on the same lattice edge, without changing
the overall structure of the state, until a structural relaxation happens, and brings the system
into a different structural state. This must involve the simultaneous ‘cooperation’ of many
bonds and is therefore much more rare than the simple ‘bond rattling’, giving rise to time
separation and two-step relaxation.

In order to devise a model more closely connected with glass-forming liquids, the site
version of the frustrated percolation model has been developed [19]. In this model particles
are allowed to diffuse on the lattice, under the constraint that no frustrated loop can be fully
occupied. Here one observes a ‘diffusional’ cage effect, more similar to that observed in real
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liquids. Moreover, it is possible to calculate the mean square displacement and the diffusion
coefficient of the particles. Numerically, it is found that these quantities also reproduce
qualitatively the corresponding quantities measured in glass-forming liquids.
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